Plasma homocysteine levels and circulating microRNA profiles in patients with ME/CFS

Alain MOREAU1,2,3, Anita Franco1, Saadallah Bouhanik1, Mansour Riazi1, Lynda Chalder1,3

1 Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
2 Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
3 Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada

Introduction
- Myalgic Encephalomyelitis, often referred to as Chronic Fatigue Syndrome, is a complex chronic disease with biochemical, metabolic, and genetic components.
- Given the clinical heterogeneity and gender differences, its etiology is not well understood. Progression varies among individuals and little is known regarding validated biomarkers for ME/CFS.
- There is a need to find biomarkers for ME/CFS, and we have identified biochemical factors and circulating miRNA that may be relevant.

Objectives
- We investigated whether alterations exist in the plasmatic levels of specific biochemical factors and circulating microRNAs in ME/CFS patients.

Methods
- Recruitment of patients:
 - French-Canadian patients (n=111, 87F + 24M) & low age & gender-matched healthy controls (n=58, 24F + 34M)

- Immunodosage of biochemical markers:
 - Evaluation of plasma levels of different biochemical markers, by ELISA method

- miRNA extraction from plasma:
 - Platelet-poor plasma from a discovery panel (ME/CFS patients n=11, 9F + 2M) & healthy controls without familial antecedent of ME/CFS (n=7, 5F + 2M)
 - miRNA extraction using the miRNeasy kit (Qiagen)

- Analysis of circulating miRNA:
 - Analysis of circulating miRNA expression profile, by hybridization array, using Agilent expression array

- Identification of miRNA:
 - Agilent GeneSpring software
 - Clustering analyses
 - miRNAs differentially expressed between ME/CFS and controls
 - Significant expression difference: ±2 fold-change, false-discovery rate ≤0.005

Results
- Among the several biomarkers tested, the mean plasma homocysteine (HCY) levels were significantly increased in a subset of ME/CFS patients when compared to controls (p < 0.05; Student’s t-test two-tailed, equal variance)
- The average values were 30±18 µmol/L and 7±3 µmol/L for high HCY ME/CFS and low HCY ME/CFS subgroup respectively. When compared to the matched healthy controls (10±8 µmol/L)

Table 1. Plasma HCY values in healthy subjects and ME patients

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Age (years)</th>
<th>Sub-group</th>
<th>HCY Level (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Controls</td>
<td>50</td>
<td>47 ± 10 (28-65)</td>
<td>Normal</td>
<td>10 ± 8 (2-37)</td>
</tr>
<tr>
<td>All ME Patients</td>
<td>98</td>
<td>51 ± 10 (28-78)</td>
<td>Low HCY</td>
<td>7 ± 3 (2-15)</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>49 ± 12 (13-64)</td>
<td>High HCY</td>
<td>30 ± 18 (16-79)</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td><0.05</td>
</tr>
<tr>
<td>Female Controls</td>
<td>20</td>
<td>46 ± 11 (28-65)</td>
<td>Normal</td>
<td>9 ± 8 (2-28)</td>
</tr>
<tr>
<td>Female ME Patients</td>
<td>62</td>
<td>51 ± 10 (28-78)</td>
<td>Low HCY</td>
<td>8 ± 4 (2-15)</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>51 ± 9 (26-64)</td>
<td>High HCY</td>
<td>32 ± 20 (16-79)</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td><0.05</td>
</tr>
<tr>
<td>Male Controls</td>
<td>30</td>
<td>49 ± 10 (30-65)</td>
<td>Normal</td>
<td>10 ± 9 (2-37)</td>
</tr>
<tr>
<td>Male ME Patients</td>
<td>14</td>
<td>50 ± 11 (32-67)</td>
<td>Low HCY</td>
<td>6 ± 2 (3-10)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>43 ± 20 (13-62)</td>
<td>High HCY</td>
<td>22 ± 8 (16-35)</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td><0.05</td>
</tr>
</tbody>
</table>

Conclusions
- Elevated levels of HCY have previously been reported in the cerebrospinal fluid of patients with fibromyalgia and ME/CFS (Regland et al. Scand J Rheumatol. 1997; 26 (4):301-7), and correlated with fatigability
- Our preliminary data strongly suggests that microRNAs could play an important role in the elevation of circulating HCY levels in a subset of ME/CFS patients

Acknowledgments
The authors wish to thank the subjects and families who participated in this study as well as the AQEM (Association Québécoise de l’Encéphalomyélite Myalgique) for their kind assistance in the recruitment of all participants. Gratitude is also expressed to Mrs. Valérie Tremblay for her clinical coordination. This work is supported by a research grant from The Sibylla-Hesse Foundation (to Dr. Alain Moreau).

Figure 1: Small but powerful. MiRNAs regulate the expression of several genes Ref: Van Rooij, E. “The Art of microRNA Research” Review Circulation Research, 2011
Could miRNA orchestrate the development and progression of Myalgic Encephalomyelitis?

Figure 2. MicroRNAs deregulated in ME/CFS patients and modulating key components of folic acid and methionine metabolic pathways

- * miR-4701-3p predicted target in high HCY expressor
- * miR-4701-3p predicted target in low HCY expressor
- * miR-3198 predicted target in high HCY expressor
- * miR-4701-3p predicted target in low HCY expressor

Figure 3. Biochemical pathway of homocysteine metabolism

Folic acid and methionine metabolic pathways